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INTRODUCTION AND BACKGROUN~D

Optimal periodic control has become an increasingly important area of

research as evidenced by the greater numbers of published papers, theses,

and dissertations resulting from government grants, academic interest and

industrial sponsorship. Examples of periodic or cyclic processes abound

in nature, ranging from the rhytbaic pulse o*' living creatures to the

perpetual orbits of celestial bodies. Many are examples of an

opti•ization process of nature. In contrast, there are numerous

engineering systems designed to operate In a steady state cotiditions. In

many of these systems performance could be significantly improved by some

form of cyclic operation. Chemnictl plant process control was one of the

first to be investigated for improvement compared to steady state

perfirmance1' . This motivated the first paper on optimal periodic

control4 And led to* its subsequently rapid theoretical

developmenr5tJ617" Sur-ey papers 9,j0, and 11 sumiafe walor results

through 1975.

The research encompassed by this report was stimulated by a

controversy121314 over an aerospace problem. The nonoptimality of

sceady state cruise for an aircraft with respect to fuel efficiency was

15 16
shown in 1976 by Speyer However, subsequent effort to find a

locally optimizing solution to this problem failed using standard

optimization computational techniques such as steepest ascent and

conjugate gradient methods. This led Speyer and Evans to the formulation

of a minimum state optimal periodic control problem that would generate

periodic solutions. A locally optimizing solution to this new problem was

obtained in the form of an asymptotic expansion about a small parameter.

---- ---------------------



This analytical result provided excellent agreement with numerical results

17
obtained in a parallel effort7. Further numerical study of this

problem and the development of corrections and additions to the general

theory of opti.al periodic control followed1 8 . The r-sults of this woak

provided a better understanding of the source of failures previously

encountered in attempts to solve the aircraft cruise problem.

This report describes a continuation of this research conducted aý the

Frank J. Seiler Research Laboratory under Work Unit 2305-F2-67. The

principal results of this effort have been presented at several

conferences and have been published in thq open literature. The major

accomplishments obtained are summarized in the remainder of this report

under three headings: (1) A Second Variation Condition; (2)

Computational Techniques; and (3) Optimal Aircraft Cruise.

This research has been a collaboration of work by the orincipal

-....- Richard T. Evans, Lt Col, tIRAF! Profesgor Jnann L_ Spvyr.

The University of Texas at Austin; and two of his graduate students, David

E. Walker and David P. Dannemiller. The work by Professor Speyer and his

students was partially sponsored by the National Science Foundation Grant

ECS7918246. The activities of the students also contributed significantly

to their Master's degrees.

A complementary research effort was sponsored by AFOSR Grant Number

77-3158 during the period 1 October 1976 to 31 Jaituary 1982. Personnel

associated with this work included: Principal Investigator, Professor

Elmer G. Gilbert, The University of Michigan; Arthur E. Frazho,

post-doctoral rese.archer; and PhD students Daniel T. Lyons and Dennis S.

19
Bernstein. See Professor Giluert's Finsl Report for a summary and a

complete bibliography of their work in optimal periodic control.

2
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OBJECTIVES OF RESEARCH

* ) The stated objective of this research was to develop the theory and

computational technique for optimizing the flight path of an aircraft with

respect to fuel consumption (maximize range for a given amount of fuel)

during the cruise segment of flight. It then was intended to apply these

tools to a point mass model of an aircraft and determine a locally

optimizing cyclic cruise flight path in a proof of principle demonstration.

Their are numerous potential applications for this research. The more

obvious Air Force benefits Include: extend the range of an air vehicle

with a fixed amount of fael; reduce its fuel requirements for a given

range thereby increasing its load capability; and increase its endurance

allowing it to remain aloft longer. The improvements of periodic cruise

flight paths appear to be most suited for remotely piloted aircraft or

cruise missile type applications. However, in many emergency or back-up

cperations. it also would be q,,ite feasibie for manned sysLems.

PROBLEM FORMULATION AND FIRST ORDER NECFSSARY CONDITIONS

The optimal periodic control problem consists of minimizing the

performance criterion

J(u(&), x 0 , 1r ) " -f L(x(t),u(t))dt, (1)

wLth respect to the perio' cT =- (0,-), the p-vector control functions

u(.) CU, where U is defined in Assumption 2 below, and the initial states

x(O) - x 0  C Rn, subject to the time-invariant dynamical equations

-(t) f(x(t),u(t)), (2)

3



with the periodic boundary conditions

x(O) - x(T). (3)

Note that both the integrand of the performance index and the dynamical

equations are Lime-iravariant.

Assumption 1: f(-.,) and L(., *) and their derivatives up to second

order are assumed to be continuous with respect to both arguments.

Assumption 2: U E u( ): u(. ) Is piecewise continuous in the

interval IO,-) and llu(.)iI sup Ju(t)J < where
tc[O,-)

P 2 1/2Uo(t)l I • ,tt) ,ut ERp]
J-1

Definition: A piecewise continuous function f(. ) has a period if

there exists a minimum U T such that

f(r) - f(O) (4)

This minimal I is called the period of f(*).

Remark: This definition excludes constant f(.).

The first order necessary conditions for ootimalitv derived from the

calculus of variations are:

S=T - f(x,u),S( )

. -sH, (6)

4



0 - Hu, (7)

x(O) - x(TC), (8)

X(O) - )X(r), (9)

H(T) OP~(..0 ~)-0 (10)

where X(t) t.Rn 1s the Lagrange multiplier that adjoins the system

constraints (2) to the performance index, L(x,u), forming the variational

Hamiltonian defined as

H(x,uX) - L(x,u) + Tf(x,u).()

It is also assuimed that the Legendre-Clebach condition is met in strong

form along the extermal path, i.e.,

H > 0. (12)
uu

Any periodic solution to the two po 4 nt boundary value problem,

equations (5) through (9) is an extremum of the problem. The condition

(10) relating the H.Kimiltonian and the performance index, evaluated along

the optimal path is the special condittioi, for testing the optimal period,

4
firet derived by Horn and Lin

5



A SECOND VARIATION CONDITION

Solutions that satisfy the first order necessary conditions, equations

(5) througi- (10) 6nd (12) are examined for local optimality by second

voriatlon tests, ouch as the Jacobi necessary condition. A very useful

form of the Jacobi test, developed by Bittaniti et. al.7 and extended by

20Gilbert and Bernstein , shows whether or not a static solution is
15 -

locally optimal. This test was used by Speyer and by Breakwell and

Shonee21 to show that static cruise for many aircraft models is not fuel

minimizing. However, this test provides insuffictent Information to

determine the optimality of cyclic or periodic solutions.

An important result of the research covered by this report is the

development of a variational theory for testing period4 c solutloiis. This

work was '-esented by Speyer22 at the 1981 Joint Automatic Control

Conference in Charlottesville, VA and will be pdhlished this fall in the

23
IEEE Transactions on Aitomatic Control . Two earlier papers, clarified

and extended by this effort, are B:AUtanti, et. al. who considered the

problem for fixed period, and Chaig 5, who extended the work to free

period. The new results are summarized in the remaining paragraphs of

this section.

Propertias of autonomous Hamiltonian systems and their related

monodromy matrix are used to establish relationships essential to

developing the second variational couditions for optimality. The

monodromy matrix is the transition maLrix for Lhe state equations (5)

through (9) evaluated over one period. It is shown that the monodromy

matrix has at lea"t two unity eigenvalues and that two of them are ccoupl%-d

(in the same Jordan block). The eigenvector associated with one of the

6



unity eigenvalues is tangent to the state space orbit described by the

related extrwaml solution. The generalized elgenvector associated with

the other unity eigenvalue defines the direction of a one-dimensional

family of orbits which varies coutinuously with the Hatiltcbnian.

Determining this direction was a key factor in developing the algorithm

used for computing ezteseal solutions to the optimal periodic control

problem describtd in the next section.

Another Important relationship derived from this effort Involves

classify1ng the eigenvalues that can result for real values of the Riccati

variable. The existence of a real-valued solution to the Riccati

differential equation is a well known second variation condition. When

the solution to the Riccati equation is periodic it can be expressed in

theform

l12P +1' 11 - 22- 2. 0 0, (13)

"here P it. a vector of initial conditions def iing the periodic solution

and the O's are sqaare partitions of the monodromy matrix. The canonical ii
similarity transformation of the monodromy matrix gives

ID1 012 P 2
S [L-1 . P 

(14)

L 22 12

where the identity (13) is used to obtain the zero element and the

similarity transform matrix ib specified as,

-L AL -P I.

7



The eiganvalues of this transformed matrix (14) are those of the ionodromy

matrix due to their invariance through a similarity transformation.

Because of the zero element on the off-diagonal of the transformed matrix,

the eigenvalues of the subaatrices on the diagonal are the same as for the

entire matrix.

Using the symplectic property of the monodromy matrix, vhich is also

preserved through the similarity transformation, the following important

relationship is obtained,

0 11 +~Z~ 4 12P022 - PO012 J (1S)

The significance of this equation is that it strongly restricts the

eigenvalues of the monodromy matrix that correspond to real-valued Riccati

variable elements since the elements of the monodromy matrix must also be

real-valued for a physically realizeable system. Recall also the matrix

property that the determinant of a matrix ia equal to the product of its

eigenvalues. Considering elgenvalues of magnitude or.e, the following

result can be stated:

A necessary condition that the Riccati variable matrix, P, be real-

valued is that there be no distinct eigenvalues of the monodromy

matrix on the unit circle.

81
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Remark: The satisfaction of this condition does not guAirantee that P

exists for all starting times over the interval of a period. The solution

of the Riccati differential equation is still required to ensure that

there are no finite escape times.

A second variational sufficiency condition for veak local optimality

of cyclic processes can also be stated. The following condition extends

and clarifies previous statements 5 , 6 of the condition:

For the periodic control problem described by (1) through (3) and

assumptions 1 and 2, (u°(,), x°, TO) c U x Rn x T forms a weak
0

local minimum if;

(i) the first order necessary conditions (5) through (10) are

satisfied,

(ii) the strong form of the Leupndre-Clebach condition (12) In

satisfied,

(iii) there exists a real valued bounded symmetric matrix

solution to the Riccati differential equation on

0 < t < T 0 satisfying the periodic condition

P(o) -

(iv) there are no eigenvalues of the monodromy matrix on the

unit circle except for the two coupled unity (+1)

eigenvalues associated with the velocity vector O(0)

where. 6T (H)/M 0 0 ensures this coupling, and

(v) the e 4.genvalues of the mouodromy matrix off the unit

circle are distinct.

9



Remarks:

1. The requirement for earlier statements of this sufficiency

condition 6 that the matrix z( ( ,0)' : + * P have no unity

eigenvalue is never satisfied. Furthermore, it is required in condition

(iv) that the remaining eigenvalues of * (1,0) not be on the unit circle.

2. Condition (v) is a form of the strongly positive condition which

is totally lacking in the previous statements of this sufficiency

condition.

COPUTATIONAL TECHNIQUES

Although periodic optimal control problems had formed an important

class of practical problems, few numerical investigations had been

reported through 1980. Initial experimentation indicated poor convergence

behavior for firs', order optimization schemes relative to a class of

aircraft cruise problems. 16 It has been recognized that this was due in

part to the shallow curvature of the cost criterion, partly due to the

lack of sensitivity of first order methods, and finally due to the great

difficulty in closing the solutions (satisfying the periodicity

requirements). ]

In order to develop a better understanding of the difficulties

encountered in earlier numerical investigations of the optimal cyclic

aircraft cruise problm, an illustrative, silimum state, optimal periodic

control problem was formulated. An analytical solution to this problem

17was first obtained using a perturbation method most frequently

credited to Lindstedt and PoIncare. The solution can be expressed in the

form of an asymptotic series expansion about a small parameter which also

10Sii1
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can be written in the form of a Fourier series expansion. This result

captures an interesting characteristic of the solutions that satisfy the

first order necessary conditions, equations (5) through (9). That is,

they form a set of solutions varying continuously in amplitude and

period. The results of this study were'presented by Evans17 at the 1979

Joint Automatic Control Conference in Denver, CO..

The initial numerical study1 8 of the illustrative problem showed

that the approximate analytical solution was quite good. It verified the

infinity of solutions that satisfy equations (5) through (9) and form a

continuous eet or family. However, it was also eiscovered thaL an

infinity of families of solutions were found to exist. The families

intersect at common solutions called bifurcation points. An illustration

of these results Is given later in the section. It should be noted that

much work has been accomplished by dynamicists determining periodic

solutions to a set of first order differential equations. The work by

24 25Henon and by Contopoulos has been invaluable in this research and

it provides a detailed characterization of solution families and

bifurcation points.

The results from the numerical investigation of the illustrative

propblem were presented by Evans26 at the 2nd International Federation of

Automatic Control Applications of Nonlinear Programming and Optimization

at Oberpfaffenhofen, West Germany in September 1980. The emphasis here

was placed on identifying the richness and complexity of the solutions to

this type of control problem. Characteristics of solutions and of

families of solutions were examined in some detail. The associated paper

was published in the Conference Proceedings.

11



The computer program that was used for the initial study was an

27
adaption of one developed by Broucke to find periodic solutions to 4th

order dynamic systems. Search methods about a known solution were used to

find new solutions of the family. As indicated in an earlier section the

direction of the family can be predicted from the generalized eigenvector

associated with the second unity eigenvalue of the monodromy matrix. A

shooting method, using these predicted starting values, integrates the

Euler-Lagrange equations (5) through (9) to obtain periodic solutions in

convergent iterations. The improved shooting method and additional

results from the numerical investigation of the problem was presented by

Evans at the 20th IEEE Conference on Decision and Control at San Diego

in December 1981. The associated paper was published in the proceedings

to the conference.

The remainder of this section expresses Important concepts and key

relationships associated with the development of the computational

technique employed during this research effort. First, identification of

solutions is most easily accomplished by association with their initial

conditions since a set of initial conditions identifies a unique

solution. An important charactetistic of a periodic solution is the

number of axis crossings in the same direction that occurs during one

period of the solution for a particular variable of the problem. This is

a distinguishing characteristic of a family of solutions. In most cases,

the number of axis crossings is the same fhr all solutions of the family.

This can be used as a program check to verify that a new solution belongs

to the family that was intended to be followed.

I
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After one solution has been obtained, the initial conditions for the

next solution on the family can be projec-ed. With the definition,

- y(O) - y(r) (16)

a small change in T due to a variation in the initial conditions y(O) and

the period (T) gives the folloving results:

d [ - 6y(O) - 6 y(T) - ;(T) dT (17)

(dT - (18)• .. d = [('0 -•] y(O)l

Two elements must be fixed to use JY to predict new guesses since (1)

')s proportional to a column in t-I, and (2) 0-I becomes singular

as a solution is approached. Removing corresponding columne of

r[(T) 4-I1 eliminates indeterminancy resulting in

11
-d T - 1 flz U9)

Taking the pseudo inverse of f allows computation of new s':arting

conditions from Sz for determining a new solution of the family. P less

cumbersome predictor, such as a curve fitting interpolator, is eu.gested

after several solutions have been obtained.

To illustrate the computational technique some results of the minimum

state, optimal periodic control problems will be used. The Euler Lagrange

equations derived from the first order conditions for this problia are

13



* 17 (20)

2- - (21)
2 b

-xi1 (22)

2 x2 - 2 Xl (23)

and x(O) m x(C) , (O) m(T). (24)

For this problem a static solution exists; I.e., x1 = x 2  X 2 0.

Starting from this solution, a family of solutions can be determined as in

Figure 1. The solutions are represeqted by initial conditions. For this

illustration x2(0) Y •O) 0 0 for all points graphed. The initial

value of xI is represented on the graph. The last condition is

determined by the relationship of the other states and the Hamiltonian

evaluated at the initial time. The state relationships (xI vs x2) for

several solutions are superimposed an the graph of the family and centered

at points corresponding to their vespective iniLial conditions. The scale

of the x Vs. x2 plots are all the same.

As indicated before, an Infinity of families of solutions exist.

Plots similar to the previous one are depicted in Figures 2,3, and 4 for

three additional families. Each plot is to the mame scale as in Figure

1. Note the number of axis crossings in the various examples. For a

single family the number crossings are generally the satoe. The family

that emanates from the static solution is called the principal ftaily; all

14



others are branch families. The solution identified by c In Figures 1

through 4 represents the solution of the respective family that also

satisfies the optimal period conditions, equation (10).

Several additional levels of brast'hing are shovw in the detail of

Figure 5. Note that femilies branch only in "stable" areas of the

family. Here stability refers to no eienvalues of the monodromy matrix

existing outside the unit circle. Bifurcation points (branch points of

the families) are dense in the stable re&ions of the family.

O.0 0.1 0.0 @ . o.,

FRIK•II FNJLY - FA

-0,01S T

1ijure 1. Variation of PeriLodic: Solution Along Principal Family

1 15



C -X

WAU FNULY -M

fA

figure 2. Va-istion of Periodic Solution Along Branch Family F2A

1 7 1
WOO FNULY - FS

Figure 3. Variation of Periodic Solution Along Branch Family Pr3
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FViure 4. Variation of Periodic Solution Along branch Family F5/2A
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Figure 5. Eranch Families (Detail)
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The purpose of this detail in intended to identify some

characteristics of the solutions and to emphasize the necessity of

developing a systematic approach for invesLigating optimal periodic

control problems. The amplitude and period of solutions along a family

vary continuously. However, sharp differences in the amplituie and period

of solutions of different families generally exist even though initial

conditions for both may vasy only slightly. See reftrence 18 for

identifying bifurcation points and branch families.

Sumarizing the computational technique; first, a shooting method is

used to find a closed periodic path which satisfies the first order

necessary conditions (the Euler Lagrange equation (5) through (9), except

for the transversality condition (10) associated with free period). Then

a one-dimensional family of periodic solutions is constructed using the

Eepnpralized eieenvector or a curve fitting interpolator to predict initial

conditions of additional solutions. Finally, the family is traversed in

the direction of decreasing cost criterion until the optimal period

condition (10) is satisfied.

OPTIMAL AIRCRAFT CRUISE

Fuel efficient cruise trajectories for aircraft have been a subject of

continuous theoretical interest and are becoming one of practical interest

as well. Since the steady state cruise path is not minimizing1 5 for

most point mass aircraft models, the objective is to obtain the periodic

paths that are minimizing. There appear to be two underlying mechanisms

for producing periodic paths. The first mechanism is the mismatch in the

regions of velocity and altitude where the aircraft is aerodynamic and

propulsion efficient. This is the mechanism behind chattering (or relaxed

19



steady state) cruise. There also is a potential and kinetic energy

Interchange which is optimal for fuel interchange which is optimal for

fuel performance. The need for substantial kinetic energy seems to be the

15
reasn for the velocity threshold found earlier

Recent work in thi: area includes the Master's Thesis of Walker
2 9

and Dannemiller
3 1 - Both applied the techniques summarized in this

report .o investigate the optimal periodic cruise of a hypersonic

cruiser. The results of this work were also presented by Speyer
3 1 at

the AIAA Guidance and Control Conference at Danvers, MA, in Adguat 1980.

A point mass model of an atmospheric vehicle operating in the

hypersonic region was used to investigate the fuel improvement from the

steady state cruise path obtained by modulating the flight path. The fuel

improvement obtained was due solely to a potential-kinetic energy

Interchange which was indicated by a frequency type second variational

analysis of the steady state cruise for the flat earth model. A family of

solutions was generated for both the flat and spherical earth models. By

applying the second variational sufficiency conditions for periodic

processes, only one flight path which involves the flat earth model was

found to be locally minimizing. The improvement of the periodic cruise

over the steady state cruise for this example is 4.2%. No locally

minimizing path for the spherical earth model was found. Neverthelcss,

the periodic extremal cruise paths found did improve fuel performance over

their respective steady state cruise paths by as much as 4.5%.

20



I i
R.•-cOMENDATIONS

The three principal cbjecttves of this research have been

satisfactorily achieved. Even though the minimum state illustrative

problem has been exhaustively studied, further investigation has merit.

Verification of riev theoi-y or new compitational techniques are more easi1y

accomplished with the reduced state problem. Additional relationships may

be exhibited by further investigation of out-of-plane solutions,

eigenvector directions at bifurcation points, and other solutions that

also might satisfy all first and second order conditions.

Now that a locally optimizing periodic flight path has been found for

one model, potential applications should be examineo. More realistic

aircraft models should be developed and stjdied. Certainly, the

feasibility of subjecting the aircraft to cyclic control must be

considered, in particular the cycling on a.d off of its engines.

A related area of research is associated with quasi-periodic solutions

which may provide better performance in some instances than t e periodic

solutions. A considerable amount of research effort in this area has been

expended by statistical dynamicists.
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